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LETTER TO THE EDITOR 

Dilute Potts model, duality and site-bond percolation? 

F Y  WuS 
Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft, Nederland 
and Instituut Lorentz, Rijksuniversiteit te Leiden, Nederland 

Received 3 November 1980 

Abstract. A number of results are obtained for Potts models on an arbitrary planar lattice. 
It is shown that the dual of a dilute Potts model is a graph-generating function and that the 
dual of a constrained dilute Potts model is an undiluted Potts model. It is also shown that the 
dilute Potts model generates a correlated site-bond percolation. For uncorrelated site- 
bond percolations our analysis determines the percolation threshold from a knowledge of 
the critical point of a Potts model. This generalises a recent result of Kondor who uses a 
star-triangle transformation to derive this relationship for the honeycomb and triangle 
lattices. 

The duality relation for the Potts model was first reported by Potts (1952) some 30 years 
ago. Since that time the Potts duality has been reformulated and generalised in various 
different forms (see, e.g., Kihara et a1 1954, Mittag and Stephen 1971, Wu and Wang 
1976, Essam 1979, Burkhardt 1979, Kasai er a1 1980). A common feature of these 
relations is that they connect Potts models of similar types of interactions. 

In this Letter we report on an extension of the Potts duality which is different from 
those previously reported. This is a duzility for the dilute Potts model which has been of 
recent theoretical interest (Nienhuis et a1 1979, 1980, Wu 1980). We shall show that 
the dual of the dilute Potts model is a graph-generating function and that the dual of a 
constrained dilute model is a regular (undiluted) Potts model. We also show that the 
dilute Potts model generates a correlated site-bond percolation, while the constrained 
model generates an uncorrelated percolation. This latter fact enables us to relate the 
percolation threshold of a site-bond percolation with the critical point of a correspond- 
ing Potts model. This relation, which is valid for any planar lattice, generalises a recent 
result of Kondor (1980) who obtained the same relation for the honeycomb and 
triangular lattices using a star-triangle transformation. 

Consider a dilute q-state Potts model on a planar graph G of N sites and E edges. 
We write the partition function in the form of Nienhuis et a1 (1979): 

where i = 1 , 2 , .  . . , N, aij = &(mi, mj ) ,  2;' is the fugacity of the ith site, and the 
summation over mi is for ti = 1 only. 

Let D be the dual of G and consider 'subgraphs' D' on D generated as follows. 
Shade randomly chosen f ( D ' )  faces of D and attach bonds to randomly chosen b(D') 
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edges of D which do not border any shaded face. For example, if G is a 4 x 4 lattice, 
then D is a graph having 16 faces and 10 sites, including one site residing exterior to G. 
An example of D’ is shown in figure 1. 

X 

Figure 1. Example of a mapping between a subgraph G‘ on a 4 x 4 G lattice and a subgraph 
D’ on D. The 16 sites of G are denoted by open and solid circles and the 10 sites of D are 
denoted by crosses. The single site of D residing exterior to G is connected to eight other 
sites of D. 

In the configuration shown the open (solid) circles denote the vacant (occupied) sites in 
G’ and the solid lines denote the attached bonds in G’. The broken lines denote the 
attached bonds in D’. Thus we have N = 16, E = 24, f (G’)  = f ( D ’ )  = 4, b(G’) = 7 (the solid 
lines), h(G‘) = 12, n(G‘) = 6, c(G’) = 1, b(D’) = 5 (the broken lines), g(D’)  = 1, n(D‘)  = 2, 
c(D’) = 5 ,  Xi yi = 13. 

Two sites in D’ belong to the same cluster if they are connected through a sequence 
of bonds and shaded faces. Let n (D’) be the number of clusters in D’, including isolated 
sites, and g(D’) be the number of edges in D’ bordering two shaded faces. We then 
define a graph-generating function on D as follows: 

where ui is a weight associated with the ith face of D, and the prime in ITi indicates that 
the product is taken over the f (D’ )  shaded faces only. 

We now state the duality relation connecting Z‘G’ and $Dl  as a theorem. 

Theorem 1 

(3) 

exp(K*) = 1 + q / v ,  exp(K’) = ut, z ,  = quitY’, (4) 

N-l E g ( D )  Z‘G’(q; K‘, K*,  zi)  = q t (4; v, f, ui) 

with 

where yi is the valence (coordination number) of the ith site of G. 
For a large regular lattice G of coordination number y, the boundary effect may be 

neglected and we can simply drop the subscript i throughout. But for finite graphs (and 
lattices) yi will be generally non-uniform, and it is essential to keep this distinction. In 
fact, because of the local property of the duality relation, theorem 1 and other results of 
this paper can be generalised further by letting K’, K *  etc be edge-dependent. We shall 
not do so, however, for the sake of clarity in presentation. 
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Proof. The theorem follows straightforwardly from a graphical expansion of 
Write 

exp(K*Sii) = 1 + [exp(K*) - 1]Sij ( 5 )  

in (1) and expand the'product I IE .  After carrying out the summations over vi, we may 
write the partition function as a graph-generating function on G:  

Z'G'(q; K',  K*,  z i )  = 1 exp[K'h(G)] [exp(K*)- l]b(G')qn(G')fl '  2,. (6) 
G'G G i 

Here the subgraphs G '  E G are generated by randomly selecting f(G')  sites of G as 
being vacant (i.e. the remaining sites as being occupied), and attaching bonds to 
randomly chosen b(G') of the h(G')  edges which connect occupied sites. Again, two 
occupied sites in G' belong to the same c!mter if they are connected through a sequence 
of attached bonds and occupied sites. In (6), n(G')  is the number of clusters in G' 
(including isolated sites) and the product II: is over the f(G') vacant sites. 

Now to each G' G G a unique D' 5 D can be constructed (and vice versa) as follows: 
(i) shade those faces of D containing vacant sites of G'; 
(ii) attach bonds to the edges of D complementing those of G', i.e. attach a bond to 

an edge of D if the corresponding edge of G connects two occupied sites and is empty. 

An example of this mapping for a 4 x 4 G is shown in figure 1. It is seen that (i) and (ii) 
generate precisely the subgraphs D' in (2). In particular, we have 

fP') =f(G') ,  (7) 

b (D')  = h (G') - b (G'). (8) 

Also, since by construction each circuit of G '  encircles a cluster of D' and vice versa, we 
have 

(9) 

where c(G') is the number of independent circuits in G '  and the last equality in (9) is the 
Euler relation for G'. We have also the relation 

n (D')  = c(G') + 1 = n (G') +f(G')  + b(G') - N + 1 

~ ( G ' ) = E - C '  r,+g(D') (10) 
i 

which relates h(G'),  the number of edges in G '  connecting occupied sites, to g(D'),  the 
number of edges in G' connecting vacant sites. The summation in (10) is again taken 
over the f(G')  = f (D ' )  vacant sites of G'. 

It is now convenient to start from (2) and use (8)-(10) to eliminate b(D') ,  g(D') and 
n(D').  The result is 

which reduces to (3) by comparing with (6). 

To proceed further, we now establish the equivalence of a constrained dilute Potts 

Consider a Potts model on D whose Hamiltonian X is given by 
model with a regular (undiluted) Potts model. 
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where K is the nearest-neighbour interaction (on D )  and Li is a multi-spin interaction at 
the ith face of D with 

ai = 1 if all spins surrounding the ith face of D are in the same state, 
(13) 

= 0 otherwise. 

Denoting the partition function of (12) by Z'D'(q; K, Li) ,  we then have the following 
equivalence. 

Theorem 2. 

Z'G'(q; K' ,  K*,  zi) = qN-' exp[-EK~(D)](q; K, Li) (14) 
with 

exp(K*) = [exp(W + 4 - ll/[exp(K) - 11, exp(K') = 1 - exp(-K), 

zi = q[exp(L,) - 11. (15) 

Note that (15) implies the following constraint on the dilute model: 

exp(K') = q/[exp(K*) + q - 11. 

Theorem 2 can be established by writing in Z(O) 

exp(LiSi) = 1 + [exp(Li) - 1]&, exp(K&) = 1 + [exp(K) - 11&, (17) 

and expanding first the product l-Ii exp(LiSi). Graphically representing the factor of 
exp(Li) - 1 by shading the ith face of D, it is then a simple matter to put Z ( D )  in the form 
of E ( D ) ,  and hence, by theorem 1, in the form of Z'G'. Details are straightforward and 
will not be given. 

Next we relate the dilute Potts model to a percolation problem. Consider a 
correlated site-bond percolation process on G, defined as follows. (i) The ith site of G is 
occupied with a probability si. (ii) Each edge of G is occupied with a probability p .  (iii) 
The overall probability is enhanced by a factor x for each pair of neighbouring sites that 
are both occupied. (The percolation is uncorrelated when x = 1.) As usual, we consider 
two sites to be in the same cluster if they are connected through a sequence of occupied 
edges and sites. It follows that, in counting the number of clusters, the occupancies of 
those edges adjacent to vacant sites are irrelevant. Consequently, we may use precisely 
the subgraphs G' in (6) to describe the configurations arising in the percolation. In 
particular, we define, as in Kasteleyn and Fortuin (1969) (see also Wu (1978)), a 
random cluster generating function 

Here, the symbols h ( G ' ) ,  etc, have the same meaning as in (6). The usefulness of this 
generating function is illustrated by the fact that the mean number of clusters is 
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A direct comparison of (18) with (6) now yields the following identity: 

+(G)(q; p ,  x, si) = si Z‘G’(q; K’, K*,  t i )  Cl ) 
with 

p = 1 -exp(-K*), x =exp(K’+K*),  SI = (1 +z,)-’. (21) 

As a result, the percolation threshold of the correlated site-bond percolation is 
identically the q = 1 limit of the critical point of the dilute Potts model (1). 

Of particular interest is the uncorrelated (x = 1) site-bond percolation. For x = 1 it 
is seen that the condition (16) is always satisfied at q = 1, so that + ( G )  is further related to 
the Potts model (12) on D. The exact equivalence obtained from (15) and (21) now 
reads 

s, = exp(-L,), p = exp(-K). (22) 
This is a very general result valid for any G and D. Namely, the threshold of a site-bond 
percolation is obtainable from a knowledge of the critical point of a related Potts model. 
For example, the threshold of the site-bond percolation on a square lattice is deduced 
from the critical point of the Potts model on a square lattice with nearest-neighbour 
interactions K and four-site interactions L,. Similarly, the threshold of the site-bond 
percolation on the honeycomb lattice is obtainable from the Potts critical point for the 
triangular lattice with two- and three-site interactions. The latter fact has been 
established by Kondor (1980) from a star-triangle transformation of the percolation 
configurations. In fact, using the conjectured critical point (Wu 1979) for the Potts 
model, Kondor has deduced the criticality for this site-bond percolation. 
Unfortunately, it has been shown rigorously (Enting and Wu 1980, to be submitted for 
publication) that the Wu conjecture is inaccuratef. The exact site-bond percolation 
threshold for the honeycomb lattice remains unknown to this date. 

For bipartite G, a dilute Potts model can be defined in which the vacancies can occur 
for only one of the two sublattices. For this restricted model we may simply take K‘ = 0 
in (1) and t = 1 (since there are no neighbouring shaded faces in D’) in (2). In addition to 
theorem 1, we also have the following: 

(23) 

exp(K*) = 1 + q / v ,  zi = qu,v - y c .  (24) 

N - 1  - E - ( D )  
Z L G ) ( q ; K * , Z i ) = q  0 S B  ( 4 ;  U, M I )  

with 

The subscript B here denotes the validity for bipartite G. The novel point here is that 
the dilute model is now completely equivalent to the regular Potts model (12) which has 
L, = 0 in every other face. In addition to theorem 2, we also have the following 
equivalence: 

(25) zLG)(q;~*, z , )=qN- l [ exp(~) -1 I -  E zB ( D )  ( ~ ; K , L , )  

with 

t Vicsek and Kertksz (1980) have also demonstrated that a Monte Carlo determination of the critical 
probability of the pure site percolation on the honeycomb lattice is inconsistent with the Wu conjecture. 
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Finally, both ZLG) and ZLD) can be further related to a random cluster generating 
function in the form of (18) with x = 1. In the percolation limit of q = 1, the result leads 
again to (23). 

To summarise, we have established the equivalence between the dilute Potts model 
and a graph-generating function (theorem 1). We have also shown that the dual of a 
constrained dilute model is a regular (undiluted) model (theorem 2), thus completing a 
curious mapping of a (q+  1)-state model to a model of q states. An immediate 
application of this result leads to the conclusion that a certain constrained Capel- 
Blume-Emery-Griffiths spin-1 model (Capel 1966b, Blume et a1 1971) is reducible to a 
spin-f Ising model. This fact, which differs from Capel (1966a) and Griffiths (1967), 
appears to have escaped previous attention. We have also established the connection 
between the dilute model and the site-bond percolation. In particular, we have shown 
that the percolation threshold of a site-bond percolation on any planar lattice G is 
obtainable from the critical point of a related Potts model on D. 

It is my pleasure to thank Professor J M J van Leeuwen for a discussion and Professor H 
W Capel for calling my attention to Capel (1966a). I am also grateful to Professor P W 
Kasteleyn for a critical reading of the manuscript. This investigation forms part of the 
research programme of the ‘Stichting voor Fundamenteel Onderzoek der Materie 
(FOM)’ which is financially supported by the ‘Nederlandse Organisatie voor Zuiver- 
Wetenschappelijk Onderzoek (ZWO)’. 
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